Learning & Optimization¶
Optimize architectures from production metrics using reinforcement learning.
Overview¶
UPIR uses PPO (Proximal Policy Optimization) to learn from production metrics and optimize architectures.
Quick Start¶
from upir.learning.learner import ArchitectureLearner
learner = ArchitectureLearner(upir)
optimized_upir = learner.learn(production_metrics, episodes=100)
print(f"Original cost: ${upir.architecture.total_cost}")
print(f"Optimized cost: ${optimized_upir.architecture.total_cost}")
See Also¶
- RL Optimizer API - Complete API reference
- PPO API - PPO implementation